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Initialization: Be sure the file NTGUItilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the
right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(» set directory where source files are located =x)
Get ["NTGUtilityFunctions.m"]; (* Load utilities package =)

Purpose

This is the 10th in a series of notebooks in which | work through material and exercises in the magiste-
rial new book Modern Classical Physics by Kip S. Thorne and Roger D. Blandford. If you are a physicist
of any ilk, BUY THIS BOOK. You will learn from a close reading and from solving the exercises.

Exercise 13.17 Deriwation: Entropy Increase

(a) Derive the Lagrangian equation (13.74) for the rate of increase of entropy in a dis-
sipative fluid by the steps in the sentence preceeding that equation. [Hints: If you
have already done the analogous problem, Ex. 13.13, for an ideal fluid, then you
need only compute the new terms that arise from the dissipative momentum flux
T.is = —(0g — 2no and dissipative energy fluxes Fy; = Tyis - v and Foq = —kVT.
The sum of these new contributions, when you subtract v - (momentum conservation)
from energy conservation, is V - Feong + V - (Tyis - v) — v - (V - Ti5); and this must
be added to the left side of the result pT'ds/dt = 0, Eq. (13.58), for an ideal fluid. In
doing the algebra, it may be useful to decompose the gradient of the velocity into its
irreducible tensorial parts, Eq. (13.66).]

(b) From the Lagrangian equation of entropy increase (13.74) derive the corresponding
Eulerian equation (13.75).

The solution of this problem requires quite elaborate calculations. | had to review several topics to
perform the required steps. | followed calculations in Landau and Lifshitz Fluid Mechanics.

| will approach this calculation in stages.
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Base calculation with no dissipative effects

The energy/unit volume of a fluid is

=

where the first term is the kinetic energy associated with the fluid motion and the second term is the

internal energy of the fluid, e.g., the energy associated with the thermal motion of fluid particles.

| calculate an expression for the conservation of energy
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Make use of the conservation of mass

— +V-(pv) =0
ot

and Euler’s equation
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to rewrite (2) as
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| first calculate the terms independent of the internal energy e.
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From thermodynamics we have for the enthalpy

P
h=e+ —
o)
dP
dh=Tds + — (8)
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Using (6) - (8)
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Using (13) and the continuity of mass

0 0 0
ﬁ = h_p+pT_S
ot ot ot
(14)
= h(-V-(pv))+pT(-(v-V)s)

-hV-(pv)-pT(v-V)s

Combining the two sub-calculations (9) and (14)

V2
6p(7+e) 19pV dpe
=— +
ot 2 ot ot

V2
= —V-(p v;) -pv-(Vh-TVs)

-hV-(pv)-pT(v-V)s

2

=-V- pv; -pv-Vh = hV-(pv) (15)
2

=-V- pv; -V:pvh

oo Zor)

Finally, the conservation of energy is

M(p(ﬁh)) (19

ot 2

The conservation of energy is

2

L o)

ot

Proceed further to understand the role of the different terms. If the enthalpy is expanded

e
—— =-V'|pVv| —+e+ —
ot 2 Jo}
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o[ Zed)eve]

Consider a “control volume “V with surface area A

[ov2ird [erfo- (o[ Zee) - ve) (o
P L P P A v
[t o[ Zed))- [emn, e

The first term on the right hand side is the flux of internal and kinetic energy through the surface of V.
The second term is the work done on the surface by the fluid pressure.

(19)

Inclusion of viscosity and thermal conductivity

The conservation of energy derived above (16) was

2

iﬁ&iif)=-v(pv(f+hn (20)
ot 2

where the term on the rhs represents the energy flux. If we add the additional effects of viscosity and
thermal conductivity

2

oplL + e 2
%0(% ) L_v.(p (Gnav-or) @1
ot 2

The conservation of energy is conservative form is

6pﬁ+e V2
M:—V-(p v(—+h+ V'8—KVT))
ot 2

It is traditional to represent this equation in a different form.

Reconsider the expansion of the lhs but, instead of the Euler equation, use the Navier Stokes equation.

ov VP 1 0 0
Y (V) m e s (22)
ot P p Oxk

In the following | will follow Landau and Lifshitz and use tensor index notation when it makes the details
more clear.
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Proceeding as above

Add and subtracting V-(k VT) to the right hand side

2
ap(?+e) dv  V dp dpe
=pv._ + — — —
ot ot 2 ot ot
VP 10d0x) V
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With these expressions, it follows that
2
ap("; + e) o ov; 0s
——— =-V-|pVv|—+h+v O||-oxk—+ pT(— +v~Vs)
ot 2 0 Xk ot

6p("2—2 + e)
ot

Compare this with the starting form for the conservation of energy including viscosity and thermal

axk

V2 o Vi
=-V-|pv ;+h+V'U—KVT -Oxk—+pT

|

os
— +v-Vs
ot

conductivity and note that the lhs cancels the first term on the rhs. The result is

) - V- (kVT)

0s ov;
pT(_ +V'VS) =0x— + V- (KVT)
ot 6Xk

In Landau and Lifshitz §49, this is called the general equation of heat transfer.

(23)

(24)

(26)

(27)

(28)

(29)
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0s ov;
pT(_ +V'VS) =gx— + V- (KVT)
ot 6Xk

This expression can be still further developed.

Use a traditional representation of viscosity to write

Jk — = —+———6ik_ +(_5ik_ (30)

ov; av,-(av,- oV 2 ov; ov; ov;
an an an aX,' 3 aX,' an aX,'

where n and ¢ are defined to be positive.

Then
aV,' av,- av,- 6v,- 2
{—6k— = ——=4¢(V'v) (31)
0 Xy 0 X; 0Xj 0X;

Also, although it is not immediately obvious,

ov; (dv; OV 2 9y ov; v 2 9v;\?2
_'(_'+_k__5ik_')=ﬂ(_'+_k__5ik_') (32)
an an aX,' 3 aX,' 2 an aX,' 3 aX,'
Then
s avi  dvk 2  0v;\?
pT(— +V-Vs) =V-(kVT) + ﬂ(—’ + = _ 25 —’) +((V- V)Z (33)
ot 2 an 6X,‘ 3 6X,'

We expect the entropy of the entire fluid to increase, not the entropy of individual fluid elements. Lan-
dau and Lifshitz write

%[ J:Vd"Vps] - Ldfv[%s (34)

Then

1 n({ovi ovk 2 _ 0v;)\? )
=ﬂ—W~pw)+p—st+——(V~wVT)+—(——+-————6m—ﬁ +(W-W)]

pT 2\0xx 0x; 3 0X; (35)

1 n ov; 0 Vi 2 ov; 2 2
=-V-(psv) + — V'(KVT)+—(—+———5ik—) +{(V-v)
T 2 \0xk oX; 3 oX;

Consider the volume integral of this expression

ops
Ld(v[L _
ot
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—J:Vd(VV- (oS V) + Ldfv@ + Ldfv
Ld(vé(v- v)?
T

Note

2T
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3 " Bx;

J:Vd’VV-(ps v) = fdﬂ psv-1,
A

If the surface is removed, to infinity o s v = 0.

Also note
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o (Z) - Lo-onor ()
T T T

1 1
—V-(VT) +VT-(——VT)
T T2

(VT)
T2

1—V- (VT) -
T

So, if VT - 0 as the V expands to «

[or ™D e (D) ok [

VT (VT)?
Kjdﬂ(—)~1n+KIVdW
A T T?

(VT)
K J:Vd"V -

Using these results
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37)

(39)

(40)

(41)

This form illustrates that entropy production is positive for both thermal conductivity (V T72), and viscosity

(n> 0, > 0 and squared quantities).
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References

Detailed derivation of the entropy generation and transport equation.
https://web.stanford.edu/~cantwell/AA210A_Course_Material/AA210A_Course_Notes/AA210_Fundame
ntals_of Compressible_Flow_Ch_07_BJ_Cantwell.pdf

More basic discussion of the hydrodynamic equations, especially of concepts related to the
internal energy of a flowing fluid.
http://www2.mpia-hd.mpg.de/~dullemon/lectures/fluiddynamics08/chap_1_hydroeq.pdf

The best derivation of the entropy equation is in Landau and Lifshitz (I downloaded a copy)
See also
http://astro.pas.rochester.edu/~aquillen/ast242/lecturenotes3.pdf



